
Issues in Accurate and Reliable Use of Parallel
Computing in Numerical Programs

William D. Gropp

August 27, 2004

1 Introduction

Parallel computing, as used in technical computing, is fundamentally about
achieving higher performance than is possible with a uniprocessor. The unique
issues for accurate and reliable computing are thus directly related to this desire
for performance. This chapter briefly covers the major types of parallel com-
puters, the programming models used with them, and issues in the choice and
implementation of algorithms.

2 Special Features of Parallel Computers

The fundamental feature of parallel computation is multiple threads of control.
That is, a parallel computer can execute more than one operation at a time.
The most common parallel computers today can execute different instructions
on different data; these are called multiple instruction multiple data (MIMD)
computers. Another type executes the same operation on different data (same
instruction multiple data, or SIMD); while some of the issues discussed in this
chapter apply to SIMD computers, many are the result of the ability of different
processors within MIMD systems to execute different instructions at the same
time. The discussion focuses on MIMD parallel computers.

Parallel computers can also be distinguished by the way they provide access
to data. A computer that provides hardware support for a common address
space accessible by all processors is said to provide shared memory. The most
common systems are symmetric multiprocessors (SMPs), where symmetric here
means that all processors are equal; that is, no processor is designated as the
“operating system” processor. The other major type of parallel computer does
not provide support for a common address space and instead consists of es-
sentially separate computers (often called nodes), each with its own memory
space, and an interconnection network that allows data to be communicated

1

between the nodes. These machines are said to be distributed memory paral-
lel computers. Most of the largest parallel computers are distributed-memory
computers.

2.1 The Major Programming Models

The two most common programming models are distinguished by how they
treat the memory of each processor being used by a single parallel program. In
the shared-memory programming model, all of the memory is available to every
thread of control. In the distributed-memory (or shared-nothing) programming
model, only the memory of the process is available to that process (and a parallel
program is made up of many processes). The most common instances of the
shared-memory model are threads and compiler-directed parallelism through
interfaces such as OpenMP [15]. The most common distributed-memory model
is the message-passing model, specifically using the Message Passing Interface
(MPI) [13, 14].

Another important programming model is the bulk synchronous parallel
(BSP) model [12, 1]. This model emphasizes organizing a parallel computa-
tion around “supersteps” during which each processor can act on local data
and initiate communications with other processors. At the end of the superstep
a barrier synchronization is performed. One of the most common implemen-
tations of this model, the Oxford BSP library [10], provides remote memory
operations (also known as put/get programming). Aspects of the BSP model
were incorporated into version 2 of the MPI standard.

We note that the programming model and the hardware model are separate.
For example, one can use the message-passing programming model on shared-
memory parallel computers. In all cases, the programming models address two
issues: communication of data between two (or more) threads and coordination
of the exchange of data.

Hybrids of these programming models are also common; many parallel sys-
tems are built from a collection or cluster of SMPs, where shared memory is
used within each SMP and message passing is used between SMPs. This more
complex model shares the issues and features of both and will not be discussed
further.

For a more comprehensive discussion of parallel computer hardware, see [5,
Chapter 2] or [3].

2.2 Overview

This chapter is divided into two main sections. Section 3 discusses the impact
of parallel computing on the choice of numerical algorithms. Because the cost
of coordinating separate parallel threads of execution is not zero, just counting
floating-point operations is often not an effective way to choose among numer-
ically stable algorithms for a parallel computer. Section 3 describes a simple,
yet effective time-complexity model for parallel computations and provides an

2

example of its use in understanding methods for orthogonalizing a collection of
vectors that are distributed across a parallel computer.

Section 4 discusses the implementation issues, with emphasis on the hazards
and pitfalls that are unique to parallel programs. This section provides only
an introduction to some of the issues in writing correct parallel programs but
it does cover the most important sources of problems. The chapter closes with
recommendations for developing accurate and correct parallel programs.

3 Impact on the Choice of Algorithm

The costs of communicating data between processes or coordinating access to
shared data strongly influence the choice of algorithms for parallel computers.
This section illustrates some of the pitfalls in emphasizing performance over
good numerical properties.

3.1 Consequences of Latency

The cost to communicate data between processes in the distributed-memory, or
message-passing, model is often modeled as

T = s + rn, (1)

where s is the latency (or startup cost), r the inverse of the bandwidth (or rate),
and n the number of words. Typical numbers are s = 10−50 microseconds and
r = 10−7 seconds/word. The factors that contribute to the latency include the
time to access main memory (itself relatively slow) and any software overheads.
(A more detailed model, called logP, separates the overhead from the latency,
[2].) For completeness in what follows, let f be the time for a floating-point
operation. When conducting performance studies, it is often valuable to consider
the quantities s/f and r/f so as to make the terms relative to the speed of
floating-point computation.

The cost to communicate and coordinate data in a shared-memory model
is more complex to model because of the interaction with the memory system
hardware. However, the cost of memory-atomic operations such as locks, which
are often necessary to coordinate the activities of two threads, is also on the
order of a microsecond. With modern processors running at speeds of over
2 GHz (2 × 109 cycles/second), a microsecond corresponds to roughly 2,000
floating-point operations. Because of this relatively high cost, algorithms for
parallel processors often trade more local computation for fewer communication
or coordination steps.

Orthogonalization of Vectors. A common operation in many numerical
algorithms is adding a vector u to a set of orthonormal vectors vi, i = 1, . . . , n
to form a new vector, vn+1, that is orthonormal to the original set. In exact

3

arithmetic, the new vector vn+1 is given by

v′ = u−
n∑

i=1

vi(u ◦ vi)

vn+1 =
v′

‖v′‖2
.

This is the Gramm-Schmidt process. Note that the individual inner prod-
ucts are independent; thus they can be computed with a single parallel reduction
operation (over a vector with n entries). Because reduction operations, partic-
ularly on systems with many processors, are relatively expensive, this is an
attractive formulation. Using the performance model in Equation 1, and as-
suming that the vectors are of length (dimension) m, one can compute the cost
of this approach on a parallel distributed memory computer with p processors
as roughly

Tgs = (s + rn) log p + (s + r) log p + nmf/p

= (2s + r(n + 1)) log p + nmf/p.

The cost of this algorithm, for large m, scales as m/p, with a term, due to
the inner products, that grows as log p.

Unfortunately, the classical Gramm-Schmidt algorithm is well known to be
unstable in floating point arithmetic (see, e.g., [7]). Numerical analysis texts
often recommend the modified Gramm-Schmidt method:1

v′0 ← u

for i = 1, . . . , n {
v′i+1 ← v′i − (v′i ◦ vi)

v′i+1 =
v′i+1

‖v′i+1‖2
}
vn+1 = v′n+1.

While this is numerically superior to the unmodified form, the cost on a
parallel computer is much greater because of the need to compute each inner
product separately, since the ith step relies on the results of step i−1. The cost
of the modified Gramm-Schmidt method on a parallel computer can be modeled
as

Tmgs = (n + 1)(s + r) log p + nmf/p.

On message-passing platforms, s is of the order of 10 µsec, or roughly 20, 000
floating-point operations. (Even on shared-memory platforms, s is on the order

1Other methods could be used that have even better stability properties; the same analysis
used here may be used to evaluate the performance of those methods on parallel computers.

4

of 1 µsec if remote memory is involved, or roughly the same time as for 2, 000
floating-point operations.)

An important lesson from this discussion is that the performance goals of
parallel computing can conflict with good numerical behavior. Further, for a
programmer unskilled in numerical analysis, the transformation from the poorly
performing modified Gramm-Schmidt to the much faster unmodified Gramm-
Schmidt will be an obvious one. In addition, parallel performance tools are
likely to draw the attention of the programmer to this part of the computation.

The situation isn’t lost, however. Versions of Gramm-Schmidt that iterate
on the unmodified version can often be used. These have time complexity

TI = k((2s + r(n + 1)) log p) + knmf/p, (2)

where k iterations are taken. This algorithm would be chosen only on a parallel
computer because the floating-point cost is larger than that of either original
Gramm-Schmidt algorithm. In the parallel case, however, it combines adequate
numerical properties with good parallel performance. In the final analysis, one
must balance the numerical properties of an algorithm with the performance
properties, just as partial rather than complete pivoting is usually considered
adequate for the solution of linear systems of equations on uniprocessors. For
example, in the GMRES method, classical Gramm-Schmidt is often considered
sufficient, particularly when only modest accuracy is required.

3.2 Consequences of Blocking

Another algorithmic technique that is used in parallel computing is blocking.
Blocking is a problem decomposition technique that divides a problem into
smaller blocks, which may be better able to take advantage of the computer.
Examples of blocking include algorithms for dense matrix-matrix multiply that
reduce the problem into one of multiplying subblocks of the matrix. Just as
blocking can make better use of memory systems on uniprocessors (e.g., BLAS3
[4]), blocking in parallel computers can make better use of the communication
interconnect by reducing the number of separate communication events. In the
case of a shared-memory system, it may also reduce the number of locks or other
techniques used to avoid race conditions (described in Section 4.1). However,
blocked algorithms, because they perform operations in a different order from
that of unblocked algorithms, have different numerical properties. This effect of
ordering operations is most easily seen in the simple operation of a parallel dot
product.

Dot Products. When discussing the orthogonalization example, we assumed
the existence of a fast parallel dot product routine. Such routines exist, but they
rely on associating the arithmetic so that the values are added together in a tree-
like fashion. This is not the same order of operations that would normally be
used on a single processor. Figure 1 shows two possible orderings for adding the
results from four processors. Note that a careful numerical routine may choose
an order for the summation that depends on the magnitude of the values.

5

v1 v2 v3 v4 v1 v2 v3 v4
(v1+v2)+(v3+v4)

+ +
+

((v1+v2)+v3)+v4

+
+

+

(a) (b)

Figure 1: Two orderings for summing 4 values. Shown in (a) is the ordering
typically used by parallel algorithms. Shown in (b) is the natural “do loop”
ordering.

One result is that many parallel programs lack bitwise reproducibility. That
is, because efficient parallel execution may require re-associating floating-point
operations, the exact values computed may depend on the number of threads
of execution. Hence, validating a parallel program is more difficult because one
of the most common validation approaches is to require bitwise identical results
whenever a program is modified. Addressing the issue of validating a parallel
computation against a nonparallel (uniprocessor) computation is difficult, and
it is further complicated by implementation issues specific to parallel computers.

4 Implementation Issues

Parallel computing provides new ways to write incorrect programs. These are
a result of the tension between performance and correctness. That is, most
programming models for parallel computers have made a deliberate choice to
present opportunities for performance at the cost of a greater chance for pro-
grammer error. This section details a few of the most common programming
errors for both shared-memory and message-passing programming models.

4.1 Races

One of the most dangerous and common errors in shared-memory parallel pro-
grams is a race condition. This occurs in parts of the code where a race between
two or more threads of execution determines the behavior of the program. If
the “wrong” thread wins the race, then the program behaves erroneously. To
see how easy it is to introduce a race condition, consider the following OpenMP
program:

integer n
n = 0
!$omp parallel shared(n)
n = n + 1
!$omp end parallel

6

The intent of this program is to count the number of threads used in the
parallel region.2 Variations on this program are commonly used in programming
texts to introduce parallel programming using threads. Unfortunately, this pro-
gram has a race condition. The statement n = n + 1 is not executed atomically
(that is, without possibility of interruption) on any modern processor. Instead,
it is split into a sequence of instructions, such as the following, presented here
in a generic assembly language:

load n, r1
add #1, r1
store r1, n

In words, this loads the value n into a register, adds one to that value, and
stores the result back into the memory location n. A possible execution sequence
with two threads is as follows (comments on the execution are to the right of
the exclamation point, and time proceeds down the page):

Thread 0 Thread 1
load n, r1 ! r1 has value 0

load n, r1 ! r1 also has value 0
add #1, r1 ! r1 had value 1

add #1, r1 ! r1 has value 1
store r1, n ! n now has value 1

store r1, n ! n gets value 1 again

Each thread is executing on its own processor with its own set of registers. After
this sequence, the program will have counted one rather than two threads.

The consequences of races are made more serious by the fact that in many
codes, the races are almost always “won” as the programmer expects. Thus,
codes with races will often work and pass tests, even though the possibility of
losing the race (and thus returning an incorrect result) remains. Validating such
codes is very difficult; races are in fact a common source of error in complex
programs such as operating systems.

Avoiding such race conditions is difficult. One approach was suggested by
Lamport [11]. In his sequential consistency model, the processor must execute
the program as if the lines of the program are executed by the different proces-
sors in some interleaved (but not interchanged) order. With the interpretation
of “line” as “line of the program in the programming language,” sequential con-
sistency will avoid the race illustrated above. Unfortunately, the performance
consequences of sequential consistency are severe, leading computer science re-
searchers to define various weaker consistency models and for most program-
ming languages to provide no guarantees at all. Most processors provide a way
to guarantee atomic execution of some operations. However, this always comes
with a performance cost. As a result, programming models such as OpenMP
do not provide atomic execution (and hence sequential consistency) by default.

2There are easier ways to perform this particular operation in OpenMP; this example was
picked because it is easy to explain and similar code is common in real applications.

7

In fact, no major programming model provides sequential consistency; all ma-
jor parallel programming models allow the programmer to explicitly enforce
sequential consistency, but none ensures sequential consistency.

4.2 Out-of-Order Execution

In writing algorithms with the shared-memory model, one often has to ensure
that data on one thread is not accessed by any other thread until some condition
is satisfied. For this purpose locks are often used. The following shows a simple
example of two threads controlling access to shared data with a lock:

Thread 0 Thread 1
lock (wait for data to be available)
update array
unlock

lock
access array
unlock

Unfortunately, locks are often quite expensive to execute. Programmers are
often tempted to use a simple flag variable to mediate access to the data, as
shown in the following:

Thread 0 Thread 1
flag=0
update array do while(flag .eq. 0)
flag=1

access array
flag = 0

However, this code may not execute correctly. The reason is there is no guar-
antee that either the compiler or the processor will preserve the order of the
operations to what appears to be (within a single thread) independent state-
ments. Either the compiler or the CPU may thus move the assignment flag=1
before the array update is complete (a very aggressive optimizing compiler may
move the assignment flag=1 before the update to avoid what the compiler sees
as an unnecessary store of zero to the storage location flag). In general, even
within a single thread, the order of operations is not guaranteed. Special assem-
bly language instructions can be used to force the processor to complete memory
operations before proceeding, but these must usually be inserted explicitly by
the programmer.3

If the array update is part of a time integration, then this bug will introduce
a ∆t error into the calculation. This is one of the worst possible bugs, because it
reduces the accuracy of the computation rather than providing a clear indication
of trouble.

3C programmers may use volatile to avoid some but not all of these problems.

8

In addition to these correctness issues, there exist many issues related to
performance that are specific to shared-memory parallel programs. One impor-
tant case is called false sharing. This occurs when a parallel program has two
separate memory locations on the same cache line. Even though each item is
accessed only by a single thread, the fact that the two items share a cache line
can cause serious performance problems. For the programmer, the situation is
made more difficult by the fact that most programming languages try to insu-
late the programmer from details of the hardware, thus making it more likely
that performance problems will occur.

The issues described so far have pertained to a shared-memory programming
model. The message-passing model has its own share of issues.

4.3 Message Buffering

Many message-passing programs are immune to race conditions because message
passing combines data transfer and notification into a single routine and because
there is no direct access to the memory of another process. However, message-
passing programs are susceptible to resource limits. Consider the following
simple program in which each process sends n words to the other:

Process 0 Process 1
dest = 1; dest = 0;
Send(buf, n, dest); Send(buf, n, dest);
Recv(rbuf, n, dest); Recv(rbuf, n, dest);

This is an example of an unsafe program. It is unsafe because it depends
on the underlying system to buffer the message data (the array buf on both
processes in this example) so that the Send operations can complete. At some
size n, there cannot be enough space available, and the processes will wait forever
(deadlock). In some ways, the limit on the size of n under which a program will
complete is the analogue of machine precision—it is a number that reflects a
reality of computing, a number that we wish was infinite but is all too finite.

The real risk in message passing comes from using buffered send operations in
unsafe ways. The program may operate correctly for some inputs but deadlock
for others. There are several ways to avoid this problem.

• Use a synchronous send instead of a regular send. In MPI terms, use
MPI Ssend instead of MPI Send. This ensures that the program is inde-
pendent of buffering, that is, that unsafe programs will deadlock for all
input, not just some. This approach simplifies validation of the program.

• Use explicit buffer spaces, and manage them carefully. In MPI terms, use
MPI Buffer attach and the MPI Bsend routine.

• Avoid point-to-point operations entirely, and use collective operations such
as broadcast and reduce.

• Use nonblocking send operations; in MPI terms, these are the family of
routines that include MPI Isend and MPI Send init.

9

All of these approaches have drawbacks. Their major advantage is that they
make the code’s dependence on buffering explicit rather than relying on the
implicit buffering within the message-passing system.

4.4 Nonblocking and Asynchronous Operations

A common technique for working around high-latency operations is to split the
operation into separate initiation and completion operations. This is commonly
used with I/O operations; many programmers have used nonblocking I/O calls
to hide the relatively slow performance of file read and write operations. The
same approach can be used to hide the latency of communication between pro-
cesses. For example, in MPI, a message can be sent by using a two-step process:

MPI_Request request;
MPI_Isend(buf, n, MPI_INT, dest, tag, comm, &request);
... other operations and program steps
MPI_Wait(&request, MPI_STATUS_IGNORE);

This sequence sends n integers from the calling process to the process dest
and allows the code to perform other operations without waiting for the data
to be transfered until the call to MPI Wait. Because MPI (and most other ap-
proaches to message-passing) use libraries rather than introducing a new parallel
language, there is no way to enforce this requirement or to confirm that the user
has not violated it. As a result, this approach is not without its dangers [9]. In
particular, the user must not change (or even access) the elements of buf until
after the MPI Wait completes.

Unfortunately, programming languages provide little direct support for non-
blocking operations, and hence the programmer must exercise care when using
these operations. Programming languages such as Fortran can make such ap-
proaches (for asynchronous I/O as well as for parallel computing) quite haz-
ardous, because a Fortran compiler may not preserve the data array after the
call that initiates the operation (MPI Isend above) returns. A particular ex-
ample in Fortran is array sections; the compiler may not preserve these, even
in simple cases, after the call returns. See [14, Section 10.2.2] for a discussion
of this problem in the context of MPI and Fortran. Another example is vari-
able scope. Particularly in C and C++, many variables are local to the routine
in which they are used; their space is reused once the routine exits (the vari-
ables are usually allocated on a stack that is shared by all routines within the
same thread). A nonblocking operation should ensure that a variable remains
allocated (also called “in scope”) until the nonblocking operation completes.

4.5 Hardware Errors

Because parallel computers are often used for the most challenging problems,
another source of problems is the low, but not zero, probability of an error
in the computer hardware. This has sometimes led to problems with long-
running simulations, particularly with high-performance interconnect networks.

10

For example, an interconnect that has an error rate of 1 in 1012 bits sent and
a data rate of 100 MB/sec will have an error roughly every 20 minutes (per
link!). In the past, the role of error rates in the interconnect has not always
been recognized, leading to unexpected errors in the computation. Since most
parallel programming models, both libraries and languages, specify error-free
behavior of the hardware, hardware and system software implementors work
together to provide an error-free system. Unfortunately, not all parallel systems
have properly addressed these issues, and often the application developer must
check that internode communications are reliable.

4.6 Heterogeneous Parallel Systems

A heterogeneous parallel system is one in which the processing elements are not
all the same. They may have different data representations or ranges. For exam-
ple, some processors may have 32-bit integers stored with the most significant
byte first, whereas others may have 64-bit integers with the least significant byte
first. Such systems introduce additional complexity because many algorithms
assume that given the exact same input data, the same floating-point operations
will produce, bit for bit, the same output data. For example, in some cases, a
parallel algorithm will distribute the same (small) problem and then have each
processor compute a result rather than try to parallelize a small problem; this
approach is sometimes used in multigrid and domain decomposition methods
for solving the coarse-grid problem.

On a heterogeneous system, such an approach may not be valid, depending
on how the results are used. Additional issues concern the different handling
of the less-specified parts of the IEEE 754 floating-point specification, such as
the exact meaning of the bits in a NaN (not a number). These issues must be
considered when contemplating the use of heterogeneous systems.

5 Conclusions and Recommendations

Algorithms for parallel computers must often trade additional floating-point op-
erations against communication. Moreover, providing adequate parallelism may
require using different algorithms. These algorithms must be chosen carefully
because it is all too easy to use numerically unstable algorithms for common
operations.

Writing correct parallel programs is also difficult. There is really no substi-
tute for disciplined coding practices, particularly for shared-memory programs.
One approach is to carefully annotate all accesses to shared or nonlocal data;
these annotations may be processed by program development tools to identify
potential race conditions. Some tools along these lines have been developed
(e.g., [6]), but much more needs to be done. In particular, an approach is
needed that allows an algorithm with no race conditions to be expressed in a
way that provably cannot introduce a race condition.

11

For message-passing codes, no code should rely on system buffering for cor-
rect operation. In MPI terms, any program should still work if all uses of
MPI Send are replaced with MPI Ssend (the synchronous send). Fortunately, it
is easy to test this by using the MPI profiling interface.

Moreover, the recommendations must depend on the scale of the parallelism,
that is, the number of processing elements. If the number is relatively small (on
the order of four to eight), then parallelism should be considered cautiously. The
reason is that with the rapid increase in computing power (typically doubling
every 18 months), improving performance by a factor of four is like waiting three
years for a faster computer. This does not mean that parallelism at this scale
should not be used, only that it should be used with care and without going
to extreme lengths to get better performance. For example, such applications
should use robust synchronization mechanisms in a shared-memory code rather
than relying on write-ordering and flags, as described in Section 4.2.

At much greater scale, particularly in the tens of thousands of processors,
distributed-memory computers programmed with message-passing dominate.
Applications at this scale both are more sensitive to performance scaling and
are unlikely to be replaced by a nonparallel application in the forseeable future.
These codes should exploit modern software engineering practices to isolate
the parallel implementation into a small number of well-tested library routines.
Their algorithms should be carefully chosen for the scale at which they will
operate, and attention must be paid to the effects of ordering of operations and
decompositions based on the layout of the parallel computer’s memory.

With proper care, parallel computers can be used effectively for numeric
computation. One approach is to isolate within a numerical library most of the
issues described in this chapter. Additional challenges in creating numerical
libraries for high-performance computing systems are discussed in [8].

Acknowledgment

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract W-31-
109-ENG-38.

The submitted manuscript has been created by
the University of Chicago as Operator of Argonne
National Laboratory (”Argonne”) under Contract
No. W-31-109-ENG-38 with the U.S. Department
of Energy. The U.S. Government retains for it-
self, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.

12

References

[1] R. H. Bisseling, Parallel Scientific Computation: A Structured Approach
Using BSP and MPI, Oxford University Press, Oxford, UK, March 2004.

[2] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, and T. von Eicken, LogP:
Towards a realistic model of parallel computation, ACM SIGPLAN Notices,
28 (1993), pp. 1–12.

[3] D. E. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architec-
ture: A Hardware/Software Approach, Morgan Kaufmann, San Francisco,
1999.

[4] J. Dongarra, J. D. Croz, I. Duff, and S. Hammarling, A set of level
3 Basic Linear Algebra Subprograms, ACM Trans. Math. Soft., 16 (1990),
pp. 1–17.

[5] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, and
L. Torczon, eds., The Sourcebook of Parallel Computing, Morgan Kauf-
mann, San Francisco, 2002.

[6] D. Engler, B. Chelf, A. Chou, and S. Hallem, Checking system rules
using system-specific, programmer-written compiler extensions, in Proceed-
ings of the Fourth Symposium on Operating Systems Design and Imple-
mentation (OSDI 2000), San Diego, 2000.

[7] G. H. Golub and C. F. V. Loan, Matrix Computations, Johns Hopkins
Studies in the Mathematical Sciences, The Johns Hopkins University Press,
Baltimore, third ed., 1996.

[8] W. Gropp, Exploiting existing software in libraries: Successes, failures,
and reasons why, in Object Oriented Methods for Interoperable Scientific
and Engineering Computing, M. Henderson, C. Anderson, and S. L. Lyons,
eds., Philadelphia, 1999, SIAM, pp. 21–29.

[9] P. B. Hansen, An evaluation of the Message-Passing Interface, ACM
SIGPLAN Notices, 33 (1998), pp. 65–72.

[10] J. M. D. Hill, B. McColl, S. Stefanescu, M. W. Goudreau,
K. Lang, S. B. Rao, T. Suel, T. Tsantilas, and R. H. Bisseling,
BSPlib: The BSP programming library, Parallel Computing, 24 (1998),
pp. 1947–1980.

[11] L. Lamport, How to make a multiprocessor computer that correctly ex-
ecutes multiprocess programs, IEEE Transactions on Computers, C-28
(1979), pp. 690–691.

[12] W. F. McColl, BSP programming, in Proc. DIMACS Workshop on Spec-
ification of Parallel Algorithms, G. Blelloch, M. Chandy, and S. Jagan-
nathan, eds., Princeton, May 1994, American Mathematical Society.

13

[13] Message Passing Interface Forum, MPI: A message passing interface
standard, International Journal of Supercomputer Applications, 8 (1994),
pp. 159–416.

[14] , MPI2: A message passing interface standard, High Performance
Computing Applications, 12 (1998), pp. 1–299.

[15] OpenMP Fortran Application Program Interface, Version 2.0.
http://www.openmp.org, November 2000.

14

